Lightweight Contextual Logical Structure Recovery

Po-Wei Huang, Abhinav Ramesh Kashyap, Yanxia Qin, Yajing Yang, Min-Yen Kan

National University of Singapore

SDP@COLING 2022

Web Information Retrieval
Natural Language Processing Group

Lightweight Contextual Logical Structure Recovery

Po-Wei Huang, Abhinav Ramesh Kashyap, Yanxia Qin, Yajing Yang, Min-Yen Kan* National University of Singapore

{huangpowei,abhinav,qinyx,yang0317,kanmy}@comp.nus.edu.sg

Abstract

Logical structure recovery in scientific associates text with a semantic section of ticle. Although previous work has distributed the surrounding context of a line, we may important information by employing light attention on top of a transformer-base tific document processing pipeline. Vaddition of loss function engineering a

Problem Statement

Classify each individual line into 23 predefined classes that indicate the <u>hierarchy of the document structure</u>.

vstems (such as Op-OCR) to obtain such ess cumbersome and imilar performance without relying on

by creating a parsit operates on purely 2 ating such features Can we obtain (near-)SOTA performance on logical structure recovery without relying on feature-rich information, but on context only?

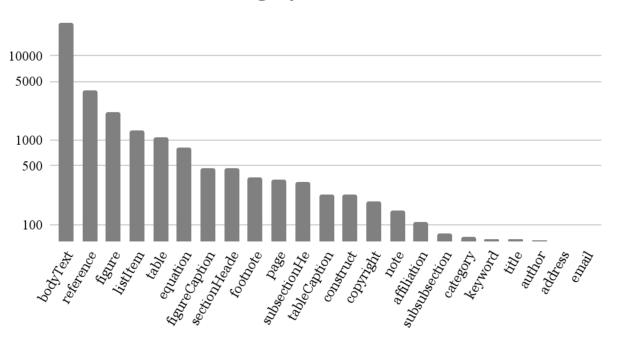
DatasetData Source

- Original SectLabel Dataset (Luong et al., IJDLS 2010):
 - 20 ACL 2009 Papers
 - o 20 CHI 2008 Papers
- Extended Testing Dataset:
 - 20 ACL 2020 Papers
- Unlabelled Dataset:
 - 570 ACL 2021 Long Papers
 - o 1895 NeurIPS 2021 Papers

8:1:1 Document Split on SectLabel Dataset for Training, Validation and Testing

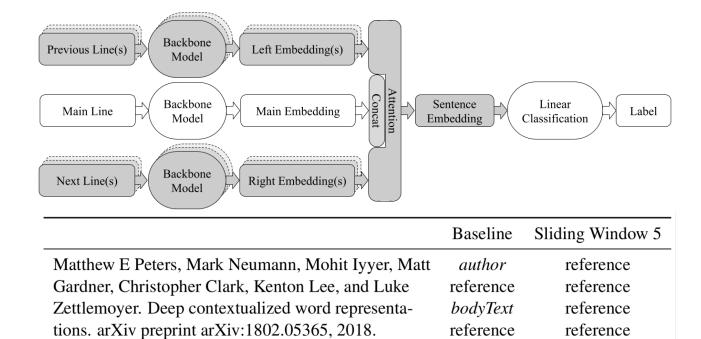
Dataset *Category Distribution*

Occurrence of Each Category

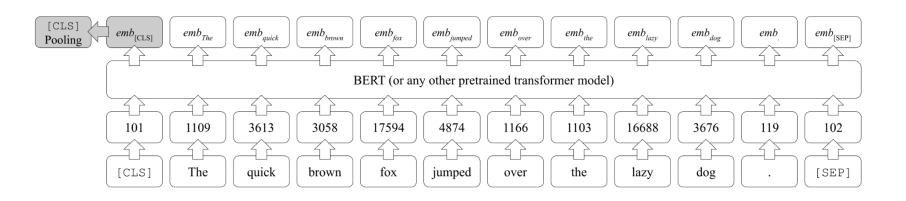


Contextual Model Construction

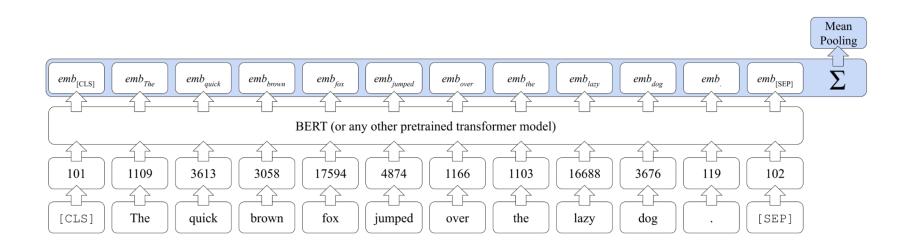
Sliding Window Attention



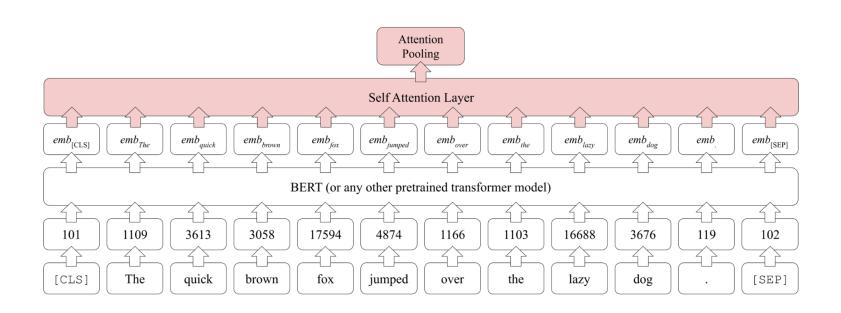
Pooling Methods for Sentence Embeddings [CLS] Token



Pooling Methods for Sentence Embeddings Mean Pooling



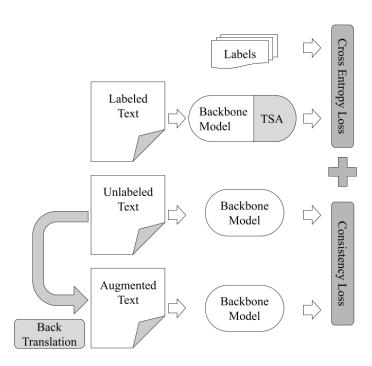
Pooling Methods for Sentence Embeddings Attention Pooling



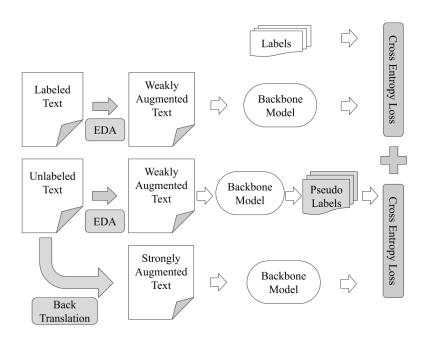
Semi-Supervised Learning Data Augmentation Techniques

Original	Once upon a midnight dreary, while I pondered, weak and weary,
Synonym Replacement (EDA) Random Insertion (EDA) Random Swap (EDA) Random Delete (EDA)	Erstwhile upon a midnight dreary, while I pondered, weak and weary, Once upon a midnight dreary, while I pondered, weak and once weary, Once upon I midnight dreary, while a pondered, weak and weary, Once upon a _ dreary, while I pondered, _ and weary,
Back Translation	Once at midnight it was bleak while I was thinking, weak and tired,

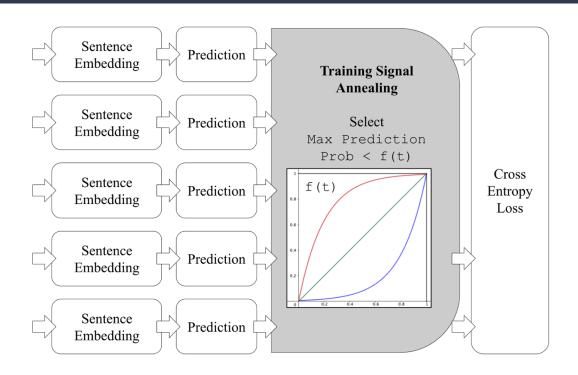
Semi-Supervised Learning Unsupervised Data Augmentation



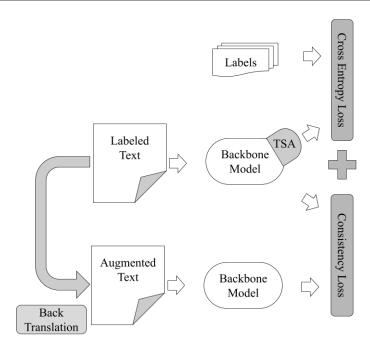
Semi-Supervised Learning FixMatch



Loss Engineering Training Signal Annealing

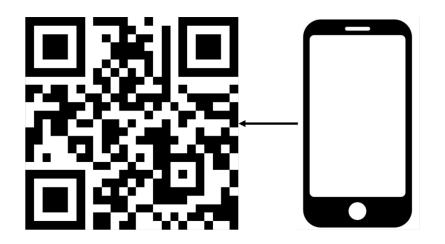


Loss Engineering Supervised Data Augmentation



Results

	SectLabel		Extended	
Model	Macro F1	Micro F1	Macro F1	Micro F1
SciWING (Ramesh Kashyap and Kan, 2020)	0.732	0.900	-	-
RoBERTa-Attn Model (OURS)	0.806	0.904	0.596	0.870
RoBERTa-Attn Model + UDA _{log} [†]	0.784	0.906	0.669	0.887
RoBERTa-Attn Model + SDA _{log} [†]	0.832	0.929	0.623	0.886
SectLabel (Luong et al., 2010) [‡]	0.847	0.934	-	-



Scan to read the full paper!

Connect with the first author!

huangpowei@comp.nus.edu.sg